LUNAR: Unifying Local Outlier Detection Methods via Graph Neural Networks

نویسندگان

چکیده

Many well-established anomaly detection methods use the distance of a sample to those in its local neighbourhood: so-called `local outlier methods', such as LOF and DBSCAN. They are popular for their simple principles strong performance on unstructured, feature-based data that is commonplace many practical applications. However, they cannot learn adapt particular set due lack trainable parameters. In this paper, we begin by unifying showing cases more general message passing framework used graph neural networks. This allows us introduce learnability into methods, form network, greater flexibility expressivity: specifically, propose LUNAR, novel, network-based method. LUNAR learns information from nearest neighbours each node way find anomalies. We show our method performs significantly better than existing well state-of-the-art deep baselines. also much robust different settings neighbourhood size.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Outlier Detection Using Replicator Neural Networks

We consider the problem of finding outliers in large multivariate databases. Outlier detection can be applied during the data cleansing process of data mining to identify problems with the data itself, and to fraud detection where groups of outliers are often of particular interest. We use replicator neural networks (RNNs) to provide a measure of the outlyingness of data records. The performanc...

متن کامل

Incremental Local Evolutionary Outlier Detection for Dynamic Social Networks

Numerous applications in dynamic social networks, ranging from telecommunications to financial transactions, create evolving datasets. Detecting outliers in such dynamic networks is inherently challenging, because the arbitrary linkage structure with massive information is changing over time. Little research has been done on detecting outliers for dynamic social networks, even then, they repres...

متن کامل

Local Outlier Detection with Interpretation

Outlier detection aims at searching for a small set of objects that are inconsistent or considerably deviating from other objects in a dataset. Existing research focuses on outlier identification while omitting the equally important problem of outlier interpretation. This paper presents a novel method named LODI to address both problems at the same time. In LODI, we develop an approach that exp...

متن کامل

Graph Convolutional Neural Networks via Scattering

We generalize the scattering transform to graphs and consequently construct a convolutional neural network on graphs. We show that under certain conditions, any feature generated by such a network is approximately invariant to permutations and stable to graph manipulations. Numerical results demonstrate competitive performance on relevant datasets.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Proceedings of the ... AAAI Conference on Artificial Intelligence

سال: 2022

ISSN: ['2159-5399', '2374-3468']

DOI: https://doi.org/10.1609/aaai.v36i6.20629